Google CTF 2018 Quals - chg-matteo @ mHACKeroni

MITM
What can you do when you are stuck?

rAIThA

ban in the Middle the communication between the client and the

seruer.

Salved by: Submit flag

217, 1SpamAndHex, *E”

Overview

In the attachment there is only one python3 script.
In the script there are five interesting functions:

1. Challenge(password, flag, reader, writer)

2. Client(password, reader, writer)

Server(password, flag, reader, writer)
Handshake(password, reader, writer)

ComputeProof(key, data)

There are also several interesting modules

curve25519 Private, Public
nacl.secret

hmac
hashlib

Functions

Challenge(password, flag, reader, writer)

Challenge(password, flag, reader, writer):

server_or_client = ReadLine(reader)
is_server = server_or_client[0] b'sS'
is_client = server_or_client[0] b'cC'

is_server:
Server (password, flag, reader, writer)
is_client:
Client(password, reader, writer)

At each connection, we can choose whether we want to talk to a Server or a Client.

A password is passed to the Client and the Server, the flag is passed as an argument only to

the Server function.

Client(password, reader, writer)

Client(password, reader, writer):
sharedKey = Handshake(password, reader, writer)
sharedKey
WriteLine(writer, b'Error: nope.")
1

mySecretBox = nacl.secret.SecretBox(sharedKey)
line = mySecretBox.decrypt(ReadBin(reader))
line != b"AUTHENTICATED":
WriteLine(writer, b'Error: nope.")
1

WriteBin(writer, mySecretBox.encrypt(b"whoami"))
line = mySecretBox.decrypt(ReadBin(reader))

line != b'root':
1

WriteBin(writer, mySecretBox.encrypt(b"exit"))
(0

If we choose to communicate with the client, we have to:

_—

complete a Handshake and compute a sharedKey
Initialize a nacl.secret.SecretBox with the sharedKey
send an encrypted 'AUTHENTICATED" message
decrypt a 'whoami' message

respond an encrypted 'root’

o U s

terminate the connection

Server(password, flag, reader, writer)

Server (password, flag, reader, writer):
sharedKey = Handshake(password, reader, writer)
sharedKey
WritelLine(writer, b'Error: nope.")
1

mySecretBox = nacl.secret.SecretBox(sharedKey)
WriteBin(writer, mySecretBox.encrypt(b"AUTHENTICATED"))

cmd = mySecretBox.decrypt(ReadBin(reader))

cmd == b'help':
rsp = b'help|exit|whoami|getflag'
cmd == b'exit':
0]
cmd == b'whoami':
rsp = b'root'
cmd == b'getflag':
rsp = flag

1
WriteBin(writer, mySecretBox.encrypt(rsp))

The Server shares a lot of logic with the client. After the Handshake, the Server listens for

encrypted commands.

We need to send a 'getflag' command to retrieve the flag.

Handshake(password, reader, writer)

Handshake (password, reader, writer):
myPrivateKey = Private()
myNonce = os.urandom(32)

WriteBin(writer, myPrivateKey.get_public().serialize())
WriteBin(writer, myNonce)

theirPublicKey = ReadBin(reader)
theirNonce = ReadBin(reader)

myNonce == theirNonce:

theirPublicKey (b'"\x00'x32, b'\x01"'" + (b'"\x00' *x 31)):

theirPublicKey = Public(theirPublicKey)

sharedKey = myPrivateKey.get_shared_key(theirPublicKey)
myProof = ComputeProof(sharedKey, theirNonce + password)

WriteBin(writer, myProof)
theirProof = ReadBin(reader)

VerifyProof(sharedKey, myNonce + password, theirProof):

sharedKey

The Handshake consists of the following steps:

_—

Compute a Private key

get a random nonce

send the corresponding Public key
send the nonce

read the other party's public key and nonce

A

refuse to continue if both nonce are equal or the other party's key is some

special value

7. compute a sharedKey

8. generate an authentication proof
9. send the proof

10. verify the other party's proof

11. return the sharedKey on success

ComputeProof(key, data)

ComputeProof (key, data):

hmac.new(key, data, digestmod=hashlib.sha256).digest()

ComputeProof returns a message authentication code which ensures:

1. data integrity with the hash function

2. authentication thanks to a shared secret key

In this program ComputeProof is called with sharedKey as key and nonce + password as

data.

Without knowing the sharedKey or the password we cannot hope to compute a valid proof

ourselves.

Modules

curve25519

There isn't any package named curve25519

X _ 0O chgma@computer: ~

File Edit View Search Terminal Help
chgm omputer:~$ pip install curve25519
Collecting curve25519

omputer:~5% |:|

*

GO gle curve25519 python L Q HH E

All Images Videos Maps Shopping More Settings Tools

GitHub - warner/python-pure25518: pure-python routines for ...

https://github.com/warner/python-pure25519 «
Apr7. 2015 - README.md. python-pure25519. This contains a collection of pure-python functions to

implement Curve25519-based cryptography. including:.

GitHub - Muterra/donna25519: Python wrapper of AGL's Curve25519 ...
https:/igithub.com/Muterra/donna25519 »

If you're just looking for something that does elliptic curve Diffie-Hellman and heard you should use
curve25519, you're probably significantly better served by NaCl or libsodium. ... This is an almost-

square-1-rewrite of Brian Warner's python bindings to AGL's curve25519-donna C ...

curve25519-donna - PyPI
https:/ipypi.org/project/curve25519-donnal «
Fe 2015 - Python wrapper for the Curve25519 cryptographic library.

eccsnacks - PyPI

https://pypi.org/project/eccsnacks/ -

. 2016 - from os import urandom from eccsnacks.curve25519 import scalarmult, scalarmult_base
Private keys in Curve25519 can be any 32-byte ... Developed and maintained by the Python
community, for the Python community.

Introducing python-ed25519 | Brian Warner - The Mozilla Blog
https:/iblog.mezilla.org/warner/2011/11/21/introducing-python-ed25519/ -
dov 21, 2011 - Ed25519 is an implementation of Schnorr Signatures in a particular elliptic curve

(Curve25519) that enables very high speed operations.

Things that use Curve25519 - ianix =

Seems like the isn't a perfect match on the first results on Google.

nacl

pynacl' is a relatively well known library, it is a Python binding to libsodium.

Both nacl and libsodium pop up often in the CTF scene, odds are you already have it

installed.
Solution

There are a couple of unanswered questions that we could not address looking at the

program code:

1. does Private() generate a new key each time?
is Private.get_public() static?
what does Private.get_shared_key() do?

can we leak the password?

vk W

can we reuse an authentication proof?

Part 1: Exploration
To address some of the unanswered question we write a simple proxy which will relay

messages back and forth for a Server and a Client without tampering with them.

This is what we gather:

- the public key changes every session (Question 2)
- the private key probably changes too (Q. 1)

- we probably cannot leak the password (Q. 4)

Part 2: Learn more about Curve25519

It's time to binge some articles about Curve25519

' pynacl github project page, https://github.com/pyca/pynacl

https://github.com/pyca/pynacl
https://github.com/jedisct1/libsodium
https://github.com/pyca/pynacl

https://cr.yp.to/ecdh.html

https://cr.yp.to/ecdh/curve25519-20051115.pdf

https://cr.yp.to/ecdh/curve25519-20060209.pdf

The primitive for Curve25519 is the function Curve25519(scalar, point.X) -> point1.X where
point.X is the X coordinate of the point, it is the multiplication of scalar * point.X on a

particular elliptic curve.
A shared secret (Q. 3) can be computed by two parties A and B with the formula

sharedSecret = Curve25519(A.privateKey, B.publicKey) == Curve25519(B.privateKey,
A.publicKey).

In our case we have control over both publicKeys

Part 3: Authentication

We need to complete the Handshake to advance with the challenge.
Recall that we can send to each Client or Server:

1. a public key

2. anonce

Since we don't know the password, we have to get the authentication proof from either a
Client or a Server. Let's call the FlagServer the Server from which we'll get the flag,

AuthClient the Client that will compute an authentication proof for us.

To authenticate with FlagServer we need to ComputeProof with its nonce and password,

that is we must send its nonce to AuthClient.

The publicKeys, on the other hand, have to be chosen so that both AuthClient and
FlagServer will compute the same sharedKey. Unfortunately we don't know AuthClient
and FlagServer privateKey, if we don't tamper with their publicKkeys we won't be able to

decrypt their conversation later on.

https://cr.yp.to/ecdh.html
https://cr.yp.to/ecdh/curve25519-20051115.pdf
https://cr.yp.to/ecdh/curve25519-20060209.pdf

A failure condition in Handshake catches our eyes

theirPublicKey (b'\x00'+32, b'\x01' + (b'\x00' * 31)):

The publicKey we send cannot be 0x0000..0000 nor 0x0100..0000. 0x0000..0000 is a special
value because Curve25519(any scalar, 0x0000..0000) = 0x0000..0000, 0x0100..0000 is not

special by any means.

Reading the article Can we avoid tests for zero in fast elliptic-curve arithmetic?? we find out
that while 0x0100..0000 is just another publickey, 0x0000..0001 behaves like 0x0000..0000,
suggesting that the publicKeys are stored in Little Endian byte order?,

If we manage to set theirPublicKey to 0x0000..0000 or 0x0100..0000 we could predict

sharedKey's value.

Luckily Elliptic Curve Cryptography is built on top of Elliptic Curves over Finite Fields, that is
we can consider the coordinates modulo a certain prime number®. In Curve25519 such

prime is 2°° - 19.°

If we send littleEndian(2%>> - 19) as our publicKey it will be reduced to 0x0000..0000
during the computation of the sharedSecret, in the end the sharedSecret will be equal
to 0x0000..0000 (similarly for littleEndian(2° - 19 + 1).

Message flow

1. Connect to AuthClient
2. Connect to FlagServer

3. Receive publicKeys and nonces

2Theorem 3.1, X(2Q) = (X(Q)? - 1)/ (...) = (12-1)*/(...) = 0 when X(Q) = 1,
https://cr.yp.to/ecdh/curvezero-20060726.pdf

30x0100..0000 little endian is equal to 1 big endian,
https://en.wikipedia.org/wiki/Endianness#Little-endian

4 also prime powers, but usually not

>2A255 - 19 — 25519 clever right?

10

https://cr.yp.to/ecdh/curvezero-20060726.pdf
https://cr.yp.to/ecdh/curvezero-20060726.pdf
https://en.wikipedia.org/wiki/Endianness#Little-endian

send littleEndian(2%>> - 19) to AuthClient and FlagServer
send FlagServer.nonce to AuthClient and AuthClient.nonce to FlagServer

receive and forward each proof (Q. 5)

N o un oA

get encrypted '"AUTHENTICATED' message from FlagServer

Part 4: Decryption

We can now authenticate with FlagServer and complete the Handshake, the only thing left

to do is initialize a nacl.secret.SecretBox with the sharedKey

mySecretBox = nacl.secret.SecretBox(sharedKey)

Let's try with sharedKey = b"\x00'*32 since that is the computed shared secret in
Curve25519.

Well, no luck there.

Maybe Private.get_shared_key() makes use of a Key derivation function, usually a shared
secret is hashed. Since sharedKey is a 32 byte (256 bits) string, let's try some hashing
algorithm with 256 bit output.

sha256? No
blake2b (used in nacl documentation examples)? No
Complain on irc? No hints for the main challenges

Looks like we are stuck.

Part 5: Going deeper

There is one natural direction you can go when you are lost, it's not up because we cannot

fly, it's down, so let's start digging.

11

The organizers didn't feel like including Private.get_shared_key() python module, that

means that it has to be some kind of standard.

_—

visit every single result on Google and Github up to the third page and beyond
search for "curve25519 key derivation function”

read the source code for libsodium

A W

test whatever crosses your mind

Salsa20 core (found in some obscure paper with a ton of magic numbers)? No
ChaCha20 core (found in the source code of libsodium)? No

Salsa20 core (found in the source code of libsodium with different magic numbers)? No
Hmac with whatever parameters we can find? No

No solution yet, but we discover some pretty nice articles

- Why not validate Curve25519 public keys could be harmful
https://vnhacker.blogspot.com/2015/09/why-not-validating-curve25519-public.html

- https://vnhacker.blogspot.com/2016/08/the-internet-of-broken-protocols.html

After 5 hours we can conclude that this is not the right approach.

Something is missing

Part 6: Backtracking

After trying every single specification we can find, we can conclude that curve25519is a
standard library, there is no way we can solve this challenge other than finding its

source code.

12

https://vnhacker.blogspot.com/2015/09/why-not-validating-curve25519-public.html
https://vnhacker.blogspot.com/2016/08/the-internet-of-broken-protocols.html

Let's see if there is any line of code peculiar enough that could lead us to the source code

curve25519 Private, Public
Private()

WriteBin(writer, myPrivateKey.get_public().serialize())
theirPublicKey = Public(theirPublicKey)
sharedKey = myPrivateKey.get_shared_key(theirPublicKey)

There are five unique lines that involve curve25519 module

- Private() and Public() are too generic

- get_shared_key() is also too generic
get_public().serialize() is pretty unusual since its output is just a 32 byte string.

If we are lucky enough the same code should be in the module tests or documentation

@® curve25519 get_pt

Go gle curve25519 get public().serialize()

(=
ol
n

All Maps Videos mages News More Settings Tools

curve25519-donnaltest curve25519.py at master - agl/curve25519 ...
https:/igithub.com/agl/curve25519-donna/blob/.../curve25519/...ftest_curve25519.py +
curve25519-donna/python-src/curve25519/testitest_curve25519.py ... pub2 = priv2.get_public() ...
assertEqual(privl.serialize(), privlia.serialize()). self.

Python 3 ftw! by katmagic - Pull Request #13 - agl/curve25519 ...
https:/fgithub.com/.../curve25519.../0a06e9134fd5208a665d9ddfe25d61f9d2921a23... ~
return sha256("curve25519-shared:"+shared).digest(), + return ... secret = sha256("curve25519-
private:"+seed).digest(), + secret = sha256(b"curve25519-private:"+seed).digest(). else: else:
failUnlessEqual{privl.serialize(), privla.serialize()), + self. shared_myhash =
privi.get_shared_key(priv2Z.get_public(). myhash) ..

Wow, first result and we even found that during the Overview. Tunnel vision sure is bad for

your health.

13

In the end the key derivation function was super arbitrary in true cryptography fashion®

_hash_shared(shared) :

sha256 (b"curve25519-shared:"+shared) .digest()

We have it all now.

Part 7: getflag

In the end:

-_—

Connect to AuthClient

Connect to FlagServer

Receive publicKeys and nonces

send littleEndian(2%*° - 19) to AuthClient and FlagServer

send FlagServer.nonce to AuthClient and AuthClient.nonce to FlagServer
receive and forward each proof (Q. 5)

get encrypted 'AUTHENTICATED' message from FlagServer

compute sharedKey = _hash_shared(b"\x00' * 32)

initialize the nacl.secret.SecretBox with sharedKey

= 0 ® NV AW N

0. send encrypted b'getflag'
11. receive and decrypt the flag
12. CTF{kae3eebav8Ac7Mi0ORKgh6eeLisuut9oP}

13. submit and go to sleep

6 https://github.com/agl/curve25519-donna/blob/master/python-src/curve25519/keys.py#L9

14

https://github.com/agl/curve25519-donna/blob/master/python-src/curve25519/keys.py#L9

Appendix

Final solution script

#1/usr/bin/env python3

from binascii import hexlify

from binascii import unhexlify
import logging

import sys

import os

import nacl.secret

import hmac

import hashlib

import pwn

pwn.context.log_level = logging.DEBUG
from hashlib import sha256, sha512

def ReadLine(reader):
data=b"
while not data.endswith(b"\n'):
cur = reader.recv(1)
data += cur
ifcur==b'"":
return data
return data[:-1]

def WriteLine(writer, msg):
writer.send(msg +b"\n')

def ReadBin(reader):
return unhexlify(ReadLine(reader))

def WriteBin(writer, data):
WriteLine(writer, hexlify(data))

def main():
pk =
long_to_bytes(57896044618658097711785492504343953926634992332820282019728792003956564819950
).rjust(32, "\0")[::-1]
pkl=
long_to_bytes(57896044618658097711785492504343953926634992332820282019728792003956564819949
).rjust(32, "\0")[::-1]
with pwn.remote('mitm.ctfcompetition.com', 1337) as c:
c.sendline('c")
ckey = ReadBin(c)
cnonce = ReadBin(c)
WriteBin(c, pk1)
with pwn.remote('mitm.ctfcompetition.com', 1337) as s:
s.sendline('s')

15

skey = ReadBin(s)
snonce = ReadBin(s)
WriteBin(s, pk)
WriteBin(s, cnonce)
WriteBin(c, snonce)
cauth = ReadBin(c)
print('Recvd client verification')
WriteBin(s, cauth)
sauth = ReadBin(s)
print('Recvd server verification')
WriteBin(c, sauth)
authed = ReadBin(s)
WriteBin(c, authed)
WriteBin(s, ReadBin(c))
WriteBin(c, ReadBin(s))
k = ReadBin(c)
mySecretBox = nacl.secret.SecretBox(sha256(b"curve25519-shared:"+'\0'*32).digest())
WriteBin(s, mySecretBox.encrypt(b'getflag'))
flag = ReadBin(s)
print(mySecretBox.decrypt(flag))
if _name__=='_main__"
sys.exit(main())

16

Overview

Functions
Challenge(password, flag, reader, writer)
Client(password, reader, writer)
Server(password, flag, reader, writer)
Handshake(password, reader, writer)
ComputeProof(key, data)

Modules
curve25519
nacl

Solution

Part 1: Exploration
Part 2: Learn more about Curve25519
Part 3: Authentication
Message flow
Part 4: Decryption
Part 5: Going deeper
Part 6: Backtracking
Part 7: getflag

Appendix

17

0 oo 0O NN ol D W NN=

—_ _y =
bNA\oo

-
(8}

